Ramsey-Milman phenomenon, Urysohn metric spaces, and extremely amenable groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramsey–milman Phenomenon, Urysohn Metric Spaces, and Extremely Amenable Groups

In this paper we further study links between concentration of measure in topological transformation groups, existence of fixed points, and Ramsey-type theorems for metric spaces. We prove that whenever the group Iso (U) of isometries of Urysohn’s universal complete separable metric space U, equipped with the compact-open topology, acts upon an arbitrary compact space, it has a fixed point. The ...

متن کامل

Some extremely amenable groups

A topological group G is extremely amenable if every continuous action of G on a compact space has a fixed point. Using the concentration of measure techniques developed by Gromov and Milman, we prove that the group of automorphisms of a Lebesgue space with a non-atomic measure is extremely amenable with the weak topology but not with the uniform one. Strengthening a de la Harpe’s result, we sh...

متن کامل

Ramsey Degrees of Finite Ultrametric Spaces, Ultrametric Urysohn Spaces and Dynamics of Their Isometry Groups

We study Ramsey-theoretic properties of several natural classes of finite ultrametric spaces, describe the corresponding Urysohn spaces and compute a dynamical invariant attached to their isometry groups.

متن کامل

Ramsey degrees of finite ultrametric spaces, ultrametric Urysohn spaces and dynamics of their isometry groups

We study Ramsey-theoretic properties of several natural classes of finite ultrametric spaces, describe the corresponding Urysohn spaces and compute a dynamical invariant attached to their isometry groups.

متن کامل

Fréchet-urysohn Spaces in Free Topological Groups

Let F (X) and A(X) be respectively the free topological group and the free Abelian topological group on a Tychonoff space X. For every natural number n we denote by Fn(X) (An(X)) the subset of F (X) (A(X)) consisting of all words of reduced length ≤ n. It is well known that if a space X is not discrete, then neither F (X) nor A(X) is Fréchet-Urysohn, and hence first countable. On the other hand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2002

ISSN: 0021-2172,1565-8511

DOI: 10.1007/bf02784537